我一直对暗能量和暗物质持否定态度,一直觉得之所很多现象不能解释,是因为理论不够完善,还有更好的理论。

今天看了一期视频,在思考宇宙大爆炸之后的视界。

宇宙大爆炸时全部都是能量,后来冷却形成物质,逐渐形成电子、质子、中子、氢原子……

我忽略了一个可能,即能量一定要,且非得要形成这些我们所称的“物质”吗?剩余的能量变成我们所说的“能量”吗?我觉得确实不一定。

也许生成了其他物质,我们无法观测到,即暗物质。对应的无法观测的能量,叫暗能量。

暗物质的分布很可能和物质的分布类似,比如银河系中的暗物质就比银河系外面的暗物质多(但也未必)。

除了引力,它们与物质不发生我们已知的相互作用,或者完全无相互作用。而引力就是弯曲的时空现象,所以它们和物质一样,可以使时空弯曲。

既然它们有如此共性,不如反过来说更恰当,即时空弯曲产生了引力,既有物质的,也有暗物质的。

恒星附近暗物质少?

光速有限,可能是因为在运动中碰到了很多暗物质?

越想越乱……

 

光的全反射和白洞?

之前的Surface有了重伤,浑身粉碎性骨折,没有了气息,也无法医治,成了一具尸体。

一直珍惜的它离我而去,内心悲伤。另外,它的离去,对我的学习造成了很大的影响。

出差开会,我无法及时处理资料,无法做计算,无法将自己的结果展示给别人看,无法在有时间的时候开始学习……

欲重购一台笔记本电脑,预算一千多,找完所有都不满意。不是性能很弱,就是缺少功能,因为我离不开触控笔了。可我又囊中空空,该当如何?

幸有闲鱼,11月28日晚上23点,与卖家软磨硬泡优惠的买到了二手Surface。

以前从未在闲鱼买过东西,还略有忐忑,直到收货,才放下心来。磨损在所难免,但店家已经给贴膜了,所以外观也不错。虽然它是二手,但使用起来很好,只是偶尔略有卡顿(不太影响)。店家还赠送触控键盘和充电器,相比淘宝的1550且什么都不送,闲鱼的1450(是我讲的价)很是良心。

因为Surface只有一个USB接口,而且经常要插优盘,接口不够用,便要使用蓝牙鼠标键盘以减少接口依赖。但以前的蓝牙鼠标也找不见了,不得不又购一鼠标和一键盘。这样便凑齐了一台电脑。这次一共花费不到1700,比买一台新的Surface(当然只会是新款了)要省一多半钱。

之后,我便经常奔波,就像流浪汉。幸亏有了它,我才能完成未尽的计算,才能随时打开文献,才能看编程教程,才能写博士论文,才能编辑课件,才能随时用触控笔记录我的想法……

上周,孙老师从日本回来了,邀请我参加讨论。

今天下午,我和他一对一坐在一起,快速的在Surface上展示我的论文,展示我的计算结果,展示我的新想法。如果没有了Surface,这些都无法完成。我的一个论文上的想法也得到了他的大力支持,甚至鼓励说好好计算一下,或许能发PRD。我听了很高兴,所以,我还要用它随时更新工作进度。

就在跟孙老师讨论之时,岳老师让我发我的论文给他。我打开手机热点,用Surface联网,立即发送邮件过去,及时、快速的与老师进行了交流。

与孙老师讨论的很顺利,与岳老师联系的也很顺利。如果没有了它,对我的生活和学习就影响太大了。

我还想,等它以后不那么好用了,更加老旧了,只要它还功能完好,我还会让它服务于家庭,将它连接到电视或投影仪上,当作一个性能良好的视频点播服务器,因为它的性能胜过任何一个电视盒子。或者,拿它当作一个web服务器,或者,就当作一个mp4看电视剧吧。

 

突然很好奇,有没有人和我一样,用二手的Surface提高了学习效率,百度上搜到了这个文章,很好玩哈:闲鱼1400入手surface3 课堂上高逼格的记笔记

今天凌晨0点27分收到一封来自《Classical and Quantum Gravity》杂志的邮件,邀请我作为审稿人审理某个稿件。

说实话,我有点受宠若惊。这个杂志2016年的影响因子(Impact Factor)为3.119。
中科院分区: 本期刊属于物理 2区大类别;
所属小分类:天文与天体物理 3区;
物理:综合 2区;
物理:粒子与场物理 3区。

我一个渣渣,怎么审得了这种级别的文章。

不过,内心还是有点兴奋,哪怕是自欺欺人的说,我想应该是有人认可我吧,至少这样想会让我高兴。

不过,高兴归高兴,我还是清楚我几斤几两。为了负责,我拒绝了审稿邀请。

我想,等以后我有机会做自己想做的研究时,可能会有一点底气去审稿吧。也祝我的稿件投稿顺利。

看来我应该慎重考虑一下转型人工智能?先努力开始学着,多学点没什么坏处。

以下全文转载自:http://www.sohu.com/a/124743338_505819


来源:WIRED (MOVE OVER, CODERS—PHYSICISTS WILL SOON RULE SILICON VALLEY)

编译:Agnes Pan

“如今还真不是当物理学家的好时候。” Oscar Boykin如是说。Boykin在佐治亚理工的物理系完成了本科学业,之后于2002年在加州大学洛杉矶分校(UCLA)获得了物理学博士学位。就在四年前,瑞士大型强子对撞机的物理学家发现了希格斯玻色子,这是20世纪60年代曾首次预测存在的亚原子粒子。

正如Boykin所提到的,每个人都在期盼它真正被发现。然而,希格斯的发现并没有打破宇宙的理论模型,它没有改变任何东西,或是给予物理学家任何新的研究方向。“每当与物理有关的事情出现差错时,物理学家们都会非常兴奋,然而我们却正处于一个几乎不太会出现差错的时代。” Boykin说道,“在一个物理学家看来,这是一个令人沮丧的时代。”而且,薪水也不高。

Oscar Boykin

现在,Boykin已经不再是一位物理学家,他化身成了硅谷的软件工程师。而现如今,正是这类职业的黄金时代。

Boykin在一家价值90亿美元的创业公司Stripe工作,创建在线平台,帮助企业接收在线付款。Boykin的职责是帮助构建和运行公司收集数据的软件系统,他负责预测这些服务系统的未来走势,包括欺诈性交易发生的可能性,以及具体可能发生的时间和途径。一方面,作为一名物理学家,他非常适合这项工作,因为该职位需要极强的数学能力和抽象思维。然而,不像是纯物理学家,他现在的工作领域能提供给他无限的挑战和可能性。而且,薪水也很高。

如果物理和软件工程是亚原子粒子,那么,硅谷已经变成了粒子碰撞的地方。 Boykin在Stripe与其他三位物理学家一起工作。 去年12月,当通用电气收购了机器学习创业公司Wise.io时,通用的CEO Jeff Immelt调侃道,他刚刚获得了一家充满物理学家的公司,其中最著名的就是加州大学伯克利大学(UCB)的天体物理学家Joshua Bloom。

开源机器学习软件H20是由来自瑞士的物理学家Arno Candel(曾在SLAC国家加速器实验室工作)的帮助下开发的,该软件现在成为了全世界近7万名数据科学家的研究工具。微软的数据科学主管Vijay Narayanan也是一名天体物理学家,在他团队工作的还有其他几名物理学家。

这一切并不是经过精心策划的。“我们并不是进入了物理世界的‘幼儿园’,并拐卖了一车儿童。” Stripe的总裁兼联合创始人John Collison表示,“这样的事情只是自然而然的发生了。”而且,它发生在硅谷的每一个角落。 因为在结构和技术的角度上看,每个互联网公司需要做的事情,已经越来越与物理学家的技术和知识相对口。

一切都是顺其自然

当然,物理学家在早些时候,就在计算机技术方面发挥了重要作用,就像他们在许多其他领域有着重要作用一样。 参与设计世界上最早的计算机之一ENIAC的John Mauchly,就是一位物理学家。C语言之父Dennis Ritchie,最开始也是一位物理学家。

但是,对于进入计算机技术领域的物理学家来说,如今才算时机成熟。由于机器学习的兴起,机器需要通过分析大量数据来学习任务,这种新型数据科学和人工智能是最适合物理学家的东西。

除此之外,神经网络,以及在此基础上开发的模仿人类大脑结构的软件,都是当前行业内的热点。但是,神经网络可以说是一个巨大的工程,涉及很多线性代数和概率论。计算机科学家不一定在这些领域内有过深入的研究,但物理学家有。“对于物理学家来说,神经网络中最陌生的,只有学习如何优化这些神经网络并训练他们,但这也是相对直截了当的一个部分。”Boykin说道,“其中,有一种技术被称为‘牛顿法’,以物理学家牛顿命名,而不是其他的什么牛顿。”

微软剑桥研究实验室主管Chris Bishop,在三十年前就有了同样的感受,当时深层神经网络才刚开始在学术界崭露头角。这也是导致他从物理学转变到机器学习领域的主要原因。“一个物理学家进入了机器学习领域,这是非常自然的一件事。”他说,“甚至比计算机科学家这么做更自然。”

更大的挑战空间

Boykin感慨道,十年前,许多他的物理学家同僚都争相转入金融界。同样的数学知识体系在华尔街非常受用,可以作为预测市场发展趋势的一种准确方式。 其中最重要的工具就是Black-Scholes方程式,这是一种能确定金融衍生物价值的方法,但后来,Black-Scholes在一定程度上也帮助酿成了2008年的金融危机。现在,更多的物理学者会选择转向数据科学,以及其他类型的计算机科技领域。

约十年前,物理学家开始进入顶尖的科技公司,参与开发大数据软件,即能在数百甚至数千台机器上运行数据的系统。Boykin曾在Twitter参与开发了名为Summingbird的大数据软件,来自MIT物理系的三位年轻人,也曾在一家名为Cloudant的初创公司研发出了类似的软件。物理学家熟知该如何处理数据,并且利用他们强大的抽象思维,构建一些复杂的系统。

在Google刚成立不久的时候,公司负责构建大规模分布式系统的关键人物之一Yonatan Zunger,就拥有斯坦福大学弦理论学的博士学位。当Kevin Scott加入Google的广告组时,他负责从各处获取数据,并用这些数据来预测,哪几类广告最可能获得最多的点击量。为此,他聘请了无数名物理学家进入他的小组工作。与很多计算机科学家不同,物理学家简直就是为了机器学习的实验本质而生。“这简直就是一门实验科学。” 如今的LinkedIn首席技术官Scott感叹道。

当下,大数据软件已经十分常见,它们帮助机器学习模型展开各类预测,这也为物理学家进入硅谷开辟了更广阔的道路。在Stripe,Boykin的团队还包括Roban Kramer(哥伦比亚大学物理学博士),Christian Anderson(哈佛大学物理学硕士)和Kelley Rivoire(MIT物理学学士)。他们来到这里,是因为他们适合这样的工作。他们来到这里,也是为了得到更可观的薪水。就像Boykin所说,“科技公司的薪资简直离谱。”但同时,他们来到这里,也是为了解决更多亟待解决的问题。

Anderson之所以放弃了物理学博士,离开哈佛,就是因为他对如今物理学界的看法和Boykin一样——是一种回报递减的纯学术追求。但是,互联网产业却并非如此。Anderson表示:“互联网的涵盖面很广,这让互联网产业能拥有更多的机会,同时也扩大了它的挑战空间和问题空间。但是,在这之中,我总能看到上升空间。”

充满变化的未来

今天,物理学家正前仆后继地进入硅谷公司,但在今后的岁月里,类似的现象会进一步蔓延。机器学习不仅会改变分析数据的方式,也会改变软件的开发方式。 神经网络已经从根本上改变了图像识别、语音识别、机器翻译以及软件接口的本质。正如微软的Chris Bishop所说,软件工程正在从基于逻辑的代码编写,转向基于概率和不确定性的机器学习模型。类似Google和Facebook这样的大公司,已经开始以这种新的思维方式,重新训练他们的工程师。最终,全世界都会跟随他们的脚步前进。

换句话说,大量物理学家进入硅谷工程师的领域,意味着更大的变化即将到来。不久之后,所有的硅谷工程师也都将踏入物理学家的领域。

-END-

本文由将门创投(thejiangmen)原创编译

如需转载,请在微信公众号中回复“转载”,获得许可

将门是一家专注于加速及投资技术驱动型初创企业的创投机构。

我们为技术驱动型的创业公司对接标杆企业用户、连接产业资源并提供众多战略投资机会。

将门旗下的基金将会重点投资通过技术创新激活商业场景,实现商业价值的初创企业。关注领域包括:1)机器智能;2)物联网;3)自然人机交互;4)企业计算。