转载自:https://zhuanlan.zhihu.com/p/29309218

Python深度学习完全路线指南

介绍

深度学习目前已经成为了人工智能领域的突出话题。它在“计算机视觉”和游戏(AlphaGo)等领域的突出表现而闻名,甚至超越了人类的能力。近几年对深度学习的关注度也在不断上升,这里有一个调查结果可以参考。

这里有一个 Google 的搜索趋势图:

深度学习:Python深度学习完全路线指南[转载]

如果你对这个话题感兴趣,这里有一个很好的非技术性的介绍。如果你有兴趣了解最近的趋势,那么这里有一个很好的汇总

在这篇文章中,我们的目标是为所有深度学习的人提供一条学习之路,同时也是为想要进一步学习的人提供一条探索的路径。如果你准备好了,那么让我们开始吧!

步骤0:先决条件

建议在学习深度学习之前,你应该先了解一些机器学习的基础知识。这篇文章列出了完整的学习机器学习的资源。

如果你想要一个简单的学习版本。那么可以看下面的列表:

建议时间:2-6个月

步骤1:机器配置

在进行下一步学习之前,你应该确保你有一个支持你学习的硬件环境。一般建议你至少拥有以下硬件:

  • 一个足够好的 GPU(4 GB),最好是 Nvidia
  • 一个还可以的 CPU(比如:Intel Core i3,Intel Pentium 可能不适合)
  • 4 GB RAM(这个取决于数据集大小)

如果你还不确定,那么请阅读这个硬件指南

备注:如果你是一个硬件玩家,那么你可能已经拥有了所需的硬件。

如果你没有所需的规格,那么你可以租一个云平台来学习,比如 Amazon Web Service(AWS)。这是使用 AWS 进行深度学习的良好指南

备注:在这个阶段不要安装任何深度学习的库,安装过程我们会在步骤 3 中介绍。

步骤2:初试深度学习

现在,你已经对这个领域有了一个初步的认识,那么你应该进一步深入了解深度学习。

根据自己的偏好,我们可以选择以下几个途径:

除了上述的先学知识,你还应该了解一些流行的深度学习库和运行他们的语言。以下是一个不太完整的列表(你可以通过查看 wiki 获得更加完整的列表):

其他一些著名的库:MochaneonH2OMXNetKerasLasagneNolearn。关于深度学习语言,可以查看这个文章

你也可以查看查看 Stanford 的 CS231n 中的第 12 讲,概要性的了解一些深度学习库。

建议时间:1-3周

步骤3:选择你自己的领域

这是最有趣的部分,深度学习已经应用在各个领域中,并且取得了最先进的研究成果。如果你想更深入的了解,那么作为一个读者,你最适合的路径就是动手实践。这样才能对你现在了解的内容有一个更加深入的认识。

注意:在以下的每个领域中,都会包括一个博客,一个实战项目,一个需要的深度学习库以及一个辅助课程。第一步你应该学习一下博客,然后去安装对应的深度学习库,然后再去做实战项目。如果在这个过程中,你遇到什么问题,那么可以去学习辅助课程。

建议时间:1-2个月

步骤4:深挖深度学习

现在你应该已经已经学会了基础的深度学习算法!但是前面的路程会更加艰苦。现在,你可以尽可能高效的利用这一新获得的技能。这里有一些技巧,你应该做的,可以磨炼你的技能。

建议时间:无限

值得推荐的资源:

结语

希望这个学习路径可以帮到你。我已经尽力让它更加全面,现在你要做的,就是尽可能多的阅读和练习。想要获取神经网络的专业知识,请尝试深度学习的练习题:Identify the Digits

当你对深度学习的概念有一些了解之后,试一下Skilltest: Deep Learning。试着接受深度学习的观念。

好运!

—————————————————————————————————————

为了方便大家学习,我建立了一个Python交流群,目前群内已经有1615个小伙伴,学习寂寞的小伙伴不妨一起来玩~群号:475035830

转载自:https://zhuanlan.zhihu.com/p/29440419?group_id=893138426625429504

听说你还不懂机器学习?图片解读基本概念、五大流派与九种常见算法

机器学习正在进步,我们似乎正在不断接近我们心中的人工智能目标。语音识别、图像检测、机器翻译、风格迁移等技术已经在我们的实际生活中开始得到了应用,但机器学习的发展仍还在继续,甚至被认为有可能彻底改变人类文明的发展方向乃至人类自身。但你了解现在正在发生的这场变革吗?四大会计师事务所之一的普华永道(PwC)近日发布了多份解读机器学习基础的图表,其中介绍了机器学习的基本概念、原理、历史、未来趋势和一些常见的算法。为便于读者阅读,机器之心对这些图表进行了编译和拆分,分三大部分对这些内容进行了呈现,其中也加入了一些扩展链接,希望能帮助你进一步扩展阅读。

一、机器学习概览

知识:图片解读机器学习[转载]

1. 什么是机器学习?

机器通过分析大量数据来进行学习。比如说,不需要通过编程来识别猫或人脸,它们可以通过使用图片来进行训练,从而归纳和识别特定的目标。

2. 机器学习和人工智能的关系

机器学习是一种重在寻找数据中的模式并使用这些模式来做出预测的研究和算法的门类。机器学习是人工智能领域的一部分,并且和知识发现与数据挖掘有所交集。更多解读可参阅《一文读懂机器学习、数据科学、人工智能、深度学习和统计学之间的区别》。

知识:图片解读机器学习[转载]

3. 机器学习的工作方式

①选择数据:将你的数据分成三组:训练数据、验证数据和测试数据

②模型数据:使用训练数据来构建使用相关特征的模型

③验证模型:使用你的验证数据接入你的模型

④测试模型:使用你的测试数据检查被验证的模型的表现

⑤使用模型:使用完全训练好的模型在新数据上做预测

⑥调优模型:使用更多数据、不同的特征或调整过的参数来提升算法的性能表现

知识:图片解读机器学习[转载]

查看全文

2017年8月30日,网易公开课上线了吴恩达的《深度学习》课程。

吴恩达简介:

吴恩达博士是Google Brain项目的发起人和领导者,斯坦福大学的计算机科学教授,Coursera的联合创始人和联合主席。他还曾任百度的副总裁和首席科学家,在这里,他领导了约1300人的人工智能团队,并负责百度的国际人工智能战略和基础建设。由 deeplearning.ai 出品,网易引进的正版授权中文版深度学习工程师微专业课程,让你在了解丰富的人工智能应用案例的同时,学会在实践中搭建出最先进的神经网络模型,训练出属于你自己的 AI。


在网易的课程主页:https://study.163.com/topics/deepLearning/

吴恩达的 Deep Learing 学习网官网:https://www.deeplearning.ai/

课程简介:

吴恩达的汉语说的还真不错!佩服。

元胞自动机(Cellular Automaton,复数为Cellular Automata,简称CA,也有人译为细胞自动机、点格自动机、分子自动机或单元自动机)。是一时间和空间都离散的动力系统。散布在规则格网 (Lattice Grid)中的每一元胞(Cell)取有限的离散状态,遵循同样的作用规则,依据确定的局部规则作同步更新。大量元胞通过简单的相互作用而构成精态系统的演化。由冯诺依曼在20世纪50年代发明。

一开始是二维的,后来发展到三维,多维。

两张图片展示一下:

二维:

知识:元胞自动机

三维:

元胞自动机本来是研究在一定规则下元胞的演化的,而且得出了很多有价值的结论。比如参看文章:这个游戏没有玩家,为何在学术圈火了半个世纪?

今天还了解到,元胞自动机已经被使用到各个方面。我关心的是在物理学中的应用。

百度百科介绍到:“除了格子气元胞自动机在流体力学上的成功应用。元胞自动机还应用于磁场、电场等场的模拟,以及热扩散、热传导和机械波的模拟。另外。元胞自动机还用来模拟雪花等枝晶的形成。”

还有一个文章详细讲解了元胞自动机,很生动:http://www.swarma.org/complex/models/ca/ca1.htm

有人给出了二维元胞自动机的一个C++开源例子,原文链接:访问。我分享一下运行视频:

 

我在arXiv.cn上搜索得到的结果:https://arxiv.org/find/all/1/all: AND Cellular Automaton/0/1/0/all/0/1?client_host=cn.arxiv.org

有几个我很有兴趣:

1. Von Neumann Regular Cellular Automata  arXiv:1701.02692

2. Morphognosis: the shape of knowledge in space and time  arXiv:1701.02272

3. Neighborhood-History Quantum Walk  arXiv:1611.07495

4. Quantum cellular automata and free quantum field theory  arXiv:1608.02004

5. Particle models with self sustained current  arXiv:1606.04920

6. Neighborhood approximations for non-linear voter models  arXiv:1604.07778

转载自:电子火花

谷歌的 Project Soli 雷达技术可不光是应用在智能表,如果交到创意无限的人手上,其应用可是既实用又有趣。圣安德鲁斯大学的研究员利用开发者套件来创作了 RadarCat,能分辨靠近的物品是什么。RadarCat 通过机器学习,慢慢就会分辨到放在上面的是苹果或是橙、玻璃杯里有没有水,甚至是人体部位。

团队并没有做出太复杂的东西,他们只把手机和雷达连在一起,就能通过握机的方式和位置来做出不同反应,设备还懂得分辨手掌有没有戴上手套而改变界面呢。在应用范例里,餐厅能知道客人的饮料喝完没有、视障人士也可以在店里分辨到货品。再进一步的,团队认为农场和废料回收场也能应用 RadarCat 来分类物品。希望它能尽快从概念计划变为实际产品,造褔大众吧。