Kolb E.W., Turner M.S. The early universe (AW, 1988).pdf

Inflation and the Theory of Cosmological Perturbations.pdf

资料在我的新浪资源分享站。这些属于私人文件,访客看到如愿查看,请发email索取。

 

+———————————-+

Inflation and the Theory of Cosmological Perturbations.pdf的文章目录

Contents
1 Introduction
2 Basics of the Big-Bang Model
2.1 Friedmann equations 
2.2 Some conformalities 
2.3 The early, radiation-dominated universe
2.4 The concept of particle horizon . . . . . . . . . . . . . . . . . . . . . . . . .
3 The shortcomings of the Standard Big-Bang Theory
3.1 The Flatness Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 The Entropy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 The horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 The standard inflationary universe
4.1 Inflation and the horizon Problem . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Inflation and the flateness problem . . . . . . . . . . . . . . . . . . . . . . .
4.3 Inflation and the entropy problem . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Inflation and the inflaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Slow-roll conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 The last stage of inflation and reheating . . . . . . . . . . . . . . . . . . . .
4.7 A brief survey of inflationary models . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Large-field models . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Small-field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.3 Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Inflation and the cosmological perturbations
6 Quantum fluctuations of a generic massless scalar field during inflation
6.1 Quantum fluctuations of a generic massless scalar field during a de Sitter stage
6.2 Quantum fluctuations of a generic massive scalar field during a de Sitter stage
6.3 Quantum to classical transition . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 The power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Quantum fluctuations of a generic scalar field in a quasi de Sitter stage . . .
7 Quantum fluctuations during inflation
7.1 The metric fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Perturbed affine connections and Einstein’s tensor . . . . . . . . . . . . . . .
7.3 Perturbed stress energy-momentum tensor . . . . . . . . . . . . . . . . . . .
7.4 Perturbed Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . . . .
7.5 The issue of gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6 The comoving curvature perturbation . . . . . . . . . . . . . . . . . . . . . .
7.7 The curvature perturbation on spatial slices of uniform energy density . . . .
7.8 Scalar field perturbations in the spatially flat gauge . . . . . . . . . . . . . .
7.9 Adiabatic and isocurvature perturbations . . . . . . . . . . . . . . . . . . . .
7.10 The next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.11 Computation of the curvature perturbation using the longitudinal gauge . .
7.12 Gauge-invariant computation of the curvature perturbation . . . . . . . . . .
7.13 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14 The consistency relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 The post-inflationary evolution of the cosmological perturbations
8.1 From the inflationary seeds to the matter power spectrum . . . . . . . . . .
8.2 From inflation to large-angle CMB anisotropy . . . . . . . . . . . . . . . . .
9 Conclusions
A Evolution of the curvature perturbation on superhorizon scales
References

 

百度文库:http://wenku.baidu.com/view/f3255f641ed9ad51f01df213.html

百度百科:http://baike.baidu.com/view/5228.htm

百科摘要:

IPv6 编址

  从IPv4到IPv6最显著的变化就是网络地址的长度。RFC 2373 和RFC 2374定义的IPv6地址,就像下面章节所描述的,有128位长;IPv6地址的表达形式一般采用32个十六进制数。

  IPv6中可能的地址有3.4×10^38个。也可以想象为16个因为32位地址每位可以取16个不同的值。

  在很多场合,IPv6地址由两个逻辑部分组成:一个64位的网络前缀和一个64位的主机地址,主机地址通常根据物理地址自动生成,叫做EUI-64(或者64-位扩展唯一标识)。

  IPv6地址表示

  IPv6地址为128位长,但通常写作8组,每组为四个十六进制数的形式。例如:

  2001:0db8:85a3:08d3:1319:8a2e:0370:7344是一个合法的IPv6地址。

如果四个数字都是零,可以被省略。例如:

  2001:0db8:85a3:0000:1319:8a2e:0370:7344等价于

  2001:0db8:85a3::1319:8a2e:0370:7344遵从这些规则,如果因为省略而出现了两个以上的冒号的话,可以压缩为一个,但这种零压缩在地址中只能出现一次。因此:

  2001:0DB8:0000:0000:0000:0000:1428:57ab

  2001:0DB8:0000:0000:0000::1428:57ab

  2001:0DB8:0:0:0:0:1428:57ab

  2001:0DB8:0::0:1428:57ab

  2001:0DB8::1428:57ab都使合法的地址,并且他们是等价的。但

  2001::25de::cade是非法的。(因为这样会使得搞不清楚每个压缩中有几个全零的分组)

  同时前导的零可以省略,因此:

  2001:0DB8:02de::0e13等价于2001:DB8:2de::e13

  一个IPv6地址可以将一个IPv4地址内嵌进去,并且写成IPv6形式和平常习惯的IPv4形式的混合体。IPv6有两种内嵌IPv4的方式:IPv4映像地址和IPv4兼容地址。

  IPv4映像地址有如下格式:::ffff:192.168.89.9

  这个地址仍然是一个IPv6地址,只是0000:0000:0000:0000:0000:ffff:c0a8:5909的另外一种写法罢了。IPv4映像地址布局如下:

  | 80bits |16 | 32bits |

  +—————————- +——–+————————|

  0000………………..0000 | FFFF | IPv4 address |

  +—————————- +——–+———————– |

  IPv4兼容地址写法如下:::192.168.89.9

  如同IPv4映像地址,这个地址仍然是一个IPv6地址,只是0000:0000:0000:0000:0000:0000:c0a8:5909的另外一种写法罢了。IPv4兼容地址布局如下:

  | 80bits |16 | 32bits |

  +—————————- +——–+————————|

  0000………………..0000 | 0000 | IPv4 address |

  +—————————- +——–+———————– |

  IPv4兼容地址已经被舍弃了,所以今后的设备和程序中可能不会支持这种地址格式。

报告题目

1. Gravitational Waves and their detection: Laser-interferometers on Earth

2. GW detection in space:  projects of large space-borne laser interferometers

 报告人:A. Ruediger教授,Albert-Einstein-Institute Hannover, Germany

 摘 要

1. Gravitational waves are a consequence of Einstein’s General Theory of Relativity.  Time-derivatives of the mass quadrupole moment of celestial bodies are the source of such waves.  The waves induce tiny strains in space-time, typically of the order 10^{-21} or less. 

Michelson-type interferometers with arm-lengths in the km range have been constructed to detect such waves, yet without measuring any events.  Therefore, a second generation of such antennas is under construction, with increased sensitivities.  The technologies being pursued are discussed that lead to the desired improvements. 

 2. Gravitational waves of low frequencies (below 1 Hz) cannot be measured by terrestrial detectors, due to many noise contributions in that frequency range.  Laser interferometers in space, with huge arm-lengths, have been proposed and are under active study.  The most prominent of these, LISA, has been studied in a NASA/ESA collaboration.  Its arm-lengths

of  5 million km will allow measuring GWs from cosmological events stemming from distant galaxies and involving massive black holes.  The envisaged sensitivities would allow a deep insight into many cosmological questions.  Other proposed space-borne GW detectors will also be discussed.  The launch of the technology demonstrator mission, the LISA Pathfinder, is within a few years from now.  It will verify the key technologies that are crucial for LISA, but also for other space missions using laser interferometry.

 时间:

1. 2011年05月16日上午10:00点

2. 2011年05月17日上午10:00点

地点:科研楼五层物理所报告厅。

_________________________________________________________________________________

详细讲解了LISA

网上的资料:http://bolide.lamost.org/translat/trans58.htm

http://www.bjp.org.cn/misc/2010-05/06/content_10088.htm

http://jmwmw.jmrb.com/c/2010/05/11/08/c_6122971.shtml