量子力学中的波动性的一种解释,我觉得靠谱。非常靠谱!这个想法太酷了!

YouTube视频源地址:https://www.youtube.com/watch?v=WIyTZDHuarQ

The standard theory of quantum mechanics leaves a bit to be desired. As Richard Feynman put it, “I think I can safely say that no one understands quantum mechanics.” This is because observations of experiments have led us to a theory that contradicts common sense. The wave function contains all the information that is knowable about a particle, yet it can only be used to calculate probabilities of where a particle will likely turn up. It can’t give us an actual account of where the particle went or where it will be at some later time.

Some have suggested that this theory is incomplete. Maybe something is going on beneath the radar of standard quantum theory and somehow producing the appearance of randomness and uncertainty without actually being random or uncertain. Theories of this sort are called hidden variable theories because they propose entities that aren’t observable. One such theory is pilot wave theory, first proposed by de Broglie, but later developed by Bohm. The idea here is that a particle oscillates, creating a wave. It then interacts with the wave and this complex interaction determines its motion.

Experiments using silicone oil droplets on a vibrating bath provide a remarkable physical realization of pilot wave theories. They give us a physical picture of what the quantum world might look like if this is what’s going on – and this theory is still deterministic. The particle is never in two places at once and there is no randomness.

视频:(提示,可以选择中文字幕,非常感谢酆正玄的翻译

该项目主页:http://dualwalkers.com/ 强烈推荐!

Silicone oil droplets provide a physical realization of pilot wave theories.

播主主页:https://www.patreon.com/veritasium

Check out Smarter Every Day: http://bit.ly/VeSmarter

Support Veritasium on Patreon: http://bit.ly/VePatreon

还有一个视频主用水做的实验演示:(视频地址:https://www.youtube.com/watch?v=KJDEsAy9RyM

这种视频扬声器的制作者是Nighthawkinlight,其播客页面是 https://www.youtube.com/user/Nighthawkinlight

 

软件制作界面:

注意,首先设置视频长度(按按帧数设置,比如每秒30帧,共900帧,则一共30秒)

然后按F3开始录制,

在时间轴上将进度条拖动到某一部位,比如300处,再框选局部区域,双击放大,则插入该区域的关键帧。

依此类推,直到末尾。

然后渲染,生成视频,这一步非常耗时。下面的视频一共三十秒,耗时2小时。

不过在这两小时可以做别的事,比如我看完了这本书《Wolfram语言入门》的部分章节,认识到“纯虚函数”的重要性,以及Mathematica中实现流程编程并不方便这一事实。还学到了如何用Mathematica制作声音, 特别有趣!

视频结果:

如何理解四维球体? 十维球体呢?

视频源地址:https://www.youtube.com/watch?v=zwAD6dRSVyI

https://brilliant.org/3b1b尝试基于问题的学习方式! https://www.benbenandblue.com/

特别感谢以下赞助者:http://3b1b.co/high-d-thanks

看看Ben Eater的通道:https://www.youtube.com/user/eaterbc

音乐: 文森特·鲁宾蒂 https://soundcloud.com/vincerubinetti…

分形的讲解。里面涉及到积分、维度。

这对理解积分,分形(不可积)的数学观念和本质有帮助。这个视频自带中文字幕,需要手动打开。

制作这个视频的团队(3blue1brown)官网:https://www.3blue1brown.com/ 。里面内容很强大,佩服!

视频源地址:Fractals are typically not self-similar


题外话:

我对老外做的这些视频很佩服,他们是如何制作这种视频的。里面包括各种动态效果,演示,我想象如果是我来做,会很费时间,但我猜他们应该有比较好的方法高效率制作这种视频。